terça-feira, 24 de setembro de 2013

Código de Cores e Identificação de Capacitores

CAPACITORES


Um capacitor, de maneira simplificada, pode ser entendido como um par de de condutores (placas) separados por um material isolante (dielétrico). Quando uma diferença de potencial (tensão) é aplicada a esse par de condutores, um campo elétrico é gerado no dielétrico. Esse campo é capaz de armazenar energia, de onde vem o nome "condensador" para esse componente.



Um capacitor ideal é caracterizado por uma única constante chamada capacitância, a qual é medida em Farads (F) e pode ser definida como a razão entre a carga elétrica armazenada no capacitor e a diferença de potencial aplicada em suas placas: 

C = Q / V


Na prática, o material dielétrico possui uma corrente de fuga e uma tensão máxima de isolamento. Essa corrente de fuga é uma das causas da perda de carga de um capacitor com o passar do tempo. Além disso, os terminais condutores possuem uma resistência elétrica, que também pode ocasionar perdas.Os capacitores são amplamente utilizados em circuitos eletrônicos para bloquear a passagem de corrente contínua e permitir a passagem de corrente alternada, filtrar interferências, suavizar a saída de fontes de alimentação, sintonia de circuitos ressonantes, dentre outras aplicações. A figura abaixo ilustra de forma simplificada um modelo de capacitor de placas paralelas: Na prática, os capacitores são formados por diversas placas, dispostas de maneira a aumentar a superfícies das mesmas e obter uma maior capacitância, conforme pode ser observado na figura seguinte:


Existem diversos tipos de capacitores, de acordo com o material empregado como dielétrico. Cada dielétrico confere um valor diferente de capacitância, considerando as mesmas dimensões físicas do capacitor. Os dielétricos podem ser sólidos, líquidos ou gasosos, sendo mais comuns os dois primeiros tipos. Exemplos de materiais dielétricos utilizados em capacitores são: cerâmica, poliéster, tântalo, mica, óleo mineral, soluções eletrolíticas etc.Cada tipo de capacitor apresenta suas peculiaridades, vantagens e desvantagens:

- Cerâmicos: Capacitores pequenos, de baixo custo, adequados para altas frequências. São fabricados com valores de capacitância de picofarads (pF) até 1 microfarad (µF). Sua capacitância pode variar dependendo da tensão aplicada.
- Poliéster: Muito utilizados para sinais AC de baixa frequência, mas inapropriados para altas frequências. Seu valor típico de capacitância reside na ordem dos nanofarads (nF).
- Tântalo: Alta capacitância, tamanho reduzido, ótima estabilidade. Existem modelos polarizados e não-polarizados. Possuem maior custo de produção em relação aos capacitores eletrolíticos e tensão máxima de isolamento em torno de 50V.
- Mica: São inertes, ou seja, não sofrem variação com o tempo e são muito estáveis, porém, de alto custo de produção.Óleo: Possuem alta capacitância e são indicados para aplicações industriais, pois suportam altas correntes e picos de tensão elevados. Possuem tamanho superior em relação a outros tipos de capacitores e seu uso é limitado a baixas frequências.
- Eletrolíticos: Nome comumente empregado aos capacitores cujo dielétrico é o óxido de alumínio imerso em uma solução eletrolítica. São capacitores polarizados de alto valor de capacitância, muito utilizados em fontes de alimentação. Possuem custo reduzido em relação ao valor da capacitância, porém, proporcionam grandes perdas e seu uso é limitado a baixas frequências.A figura seguinte ilustra alguns tipos de capacitores utilizados em eletrônica:



Por exemplo, os capacitores citados acima, de códigos 202M e 225K, possuem tolerância de 20% e 10% respectivamente. Isto significa que o capacitor de 2.000 pF pode ter seu valor de capacitância entre 1600 e 2400 pF, enquanto que o capacitor de 2,2 µF pode ter seu valor entre 1,98 e 2,42 µF
A maioria dos capacitores não possui polaridade, isto é, não existe terminal positivo ou negativo, podendo ser ligados "de qualquer jeito". Entretanto, muita atenção deve ser dada aos modelos polarizados (cujos principais representantes são os eletrolíticos), pois os mesmos podem explodir, se ligados de forma invertida. Outro cuidado importante é observar a tensão máxima de isolação, a qual é especificada no próprio componente. Se for aplicada uma tensão maior do que a especificada, o componente será danificado de forma irreversível.Ao escolher um capacitor comercial, deve-se atentar para as seguintes características: tipo de dielétrico, capacitância, tensão máxima de isolamento e tolerância.Esses três últimos valores, geralmente vêm especificados no próprio componente. Em alguns casos, a tolerância é omitida, em outros a tensão máxima de isolamento.Tais valores podem estar escritos de forma explícita ou por meio de códigos universalmente aceitos. Capacitores eletrolíticos sempre trazem os valores de forma explícita, o mesmo não ocorrendo com os demais tipos.Existem dois códigos principais para a identificação de capacitores: um código numérico e outro de cores. Este último, atualmente, é empregado apenas para resistores.O código numérico é composto por três algarismos, seguido, opcionalmente, por uma letra. Esta letra corresponde à tolerância do componente, ou seja, à variação máxima do valor da capacitância especificada pelo fabricante. Da esquerda para a direita, os dois primeiros números correspondem aos dois algarismos do valor da capacitância, enquanto que o terceiro número corresponde ao fator multiplicativo. Tais valores são expressos em picofarads.Os exemplos a seguir servem para ilustrar a forma correta de interpretar o código numérico:


 

TOLERÂNCIA
Até 10pF
Acima de 10pF
B = ±0,10pF
F = ±1%
M = ±20%
C = ±0,25pF
G = ±2%
P = +100% -0%
D = ±0,50pF
H = ±3%
S = +50% -20%
F = ±1pF
J = ±5%
Z = +80% - 20%
G = ±2pF
K = ±10%






Qual a relação entre o átomo e a eletricidade?

No mundo atual é quase impossível viver sem a eletricidade. Se olharmos à nossa volta veremos diversos equipamentos que necessitam de eletricidade para funcionar. Quando nos referimos ao estudo da eletricidade, estamos, na verdade, fazendo referência aos fenômenos resultantes da propriedade chamada carga elétrica.
Pensando em fatos históricos, vemos que diversas hipóteses e várias teorias foram levantadas e desenvolvidas a fim de dar explicações mais concisas acerca dos fenômenos elétricos. Hoje sabemos com plena convicção que tais fenômenos estão ligados à estrutura da matéria.
Como já estudamos, sabemos que todos os corpos são constituídos de átomos, que podem ser descritos como constituídos de partículas elementares. As principais são os prótons, nêutrons e elétrons.
carga elétrica é uma propriedade que está intimamente associada a certas partículas elementares que formam o átomo (prótons e elétrons). O modelo do sistema planetário é o modelo simples mais adotado para explicar como tais partículas se distribuem no átomo. De acordo com o modelo planetário, os prótons e nêutrons localizam-se no núcleo, já os elétrons estão em uma região denominada eletrosfera.
Através de experiências foi possível mostrar que prótons e elétrons têm comportamentos elétricos opostos. Por isso, convencionou-se que há duas espécies de cargas elétricas: a positiva, que tem comportamento igual ao do próton; e a negativa, que se comporta como a carga elétrica do nêutron. Os nêutrons não apresentam a citada propriedade física, isto é, os nêutrons não possuem carga elétrica.
No Sistema Internacional de Unidades (SI), a unidade de carga elétrica é o coulomb (C). O próton e o elétron, em módulo, possuem a mesma quantidade de carga elétrica. O valor da carga do próton e do elétron é denominado quantidade de carga elementar (e) e possui o valor de:
e=1,6 .10-19 C
Como 1 C é uma quantidade de carga elétrica muito grande, é comum a utilização dos seus submúltiplos:


mC (milicoulomb)= 10-3  C
μC (microcoulomb)= 10-6  C

nC (nanocoulomb)= 10-9  C

A quantidade de carga elétrica total (Q) será sempre um múltiplo inteiro (n) vezes o valor da carga elementar (e). Essa quantidade de carga pode ser determinada através da seguinte expressão:
Q= n .  e
Geralmente quando um corpo qualquer apresenta o número de prótons igual ao de elétrons dizemos que esse corpo está eletricamente neutro, ou seja, o corpo possui carga total igual a zero. Portanto, quando o corpo apresenta número de prótons diferente do número de elétrons, dizemos que o corpo se encontra eletrizado, ou seja, o corpo apresenta carga elétrica diferente de zero.
Dessa forma, um corpo estará eletrizado quando perde ou recebe elétrons. Em todos os experimentos realizados até o momento, verifica-se que, em sistemas isolados, a quantidade de carga elétrica permanece constante. 
Essa lei é chamada de conservação da quantidade de carga elétrica. 
Portanto, podemos dizer que a carga elétrica não é criada e não se perde, ela apenas se transfere de um corpo para outro.







sábado, 21 de setembro de 2013

História da Eletricidade

A História da eletricidade tem seu início no século VI a.C., na Grécia Antiga, quando o filósofo Thales de Mileto, após descobrir uma resina vegetal fóssil petrificada chamada âmbar (elektron em grego), esfregou-a com pele e lã de animais e pôde então observar seu poder de atrair objetos leves como palhas, fragmentos de madeira e penas.


Tal observação iniciou o estudo de uma nova ciência derivada dessa atração.

Os estudos de Thales foram continuados por diversas personalidades, como o médico da rainha da Inglaterra Willian Gilbert, que, em 1600, denominou o evento de atração dos corpos de eletricidade.
Também foi ele quem descobriu que outros objetos, ao serem atritados com o âmbar, também se eletrizam, e por isso chamou tais objetos de elétricos.
Em 1730, o físico inglês Stephen Gray identificou que, além da eletrização por atrito, também era possível eletrizar corpos por contato (encostando um corpo eletrizado num corpo neutro). Através de tais observações, ele chegou ao conceito de existência de materiais que conduzem a eletricidade com maior e menor eficácia, e os denominou como condutores e isolantes elétricos. Com isso, Gray viu a possibilidade de canalizar a eletricidade e levá-la de um corpo a outro.
O químico francês Charles Dufay também contribuiu enormemente para a aprimoração dos estudos da eletricidade, quando, em 1733, propôs a existência de dois tipos de eletricidade, a vítrea e a resinosa, que fomentaram a hipótese de existência de fluidos elétricos.
Essa teoria foi, mais tarde, por volta de 1750, continuada pelo conhecido físico e político Benjamin Franklin, que propôs uma teoria na qual tais fluidos seriam na verdade um único fluido. Baseado nessa teoria, pela primeira vez se conhecia os termos positivo e negativo na eletricidade.
As contribuições para o então entendimento sobre a natureza da eletricidade tem se aprofundado desde o século XIX, quando a ideia do átomo como elemento constituinte da matéria foi aceita e, com ela, a convicção de que a eletricidade é uma propriedade de partículas elementares que compõem o átomo (elétrons, prótons e nêutrons).
Por volta de 1960, foi proposta a existência de seis pares de partículas elementares dotadas de carga elétrica – os quarks, que compõem outras particularidades como os prótons que, então, deixam de ser elementares.



Fonte:


Conheça Nikola Tesla

Nikola Tesla  (em sérvio:  Nikola Tesla  ou  Никола Тесла ) ( Smiljan ,  Império Austríaco ,  10 de julho  de  1856  —  Nova Iorque ,  7 de...